CS 590D Final Report
Threshold Cryptography

Intrusion Fault-Tolerance using
Threshold Cryptography

Final Report
May 2nd |, 2004
Abhilasha Bhargav, Rahim Sewani and Sarvjeet Singh
Department of Computer Science
Purdue University, West Lafayette IN

Abstract

There is a need of guaranteeing the
authenticity of messages sent by a group of
individuals to another group. Despite the
increasing awareness of security, malicious
failures are inevitable in the modern world.
We had proposed to develop a fault-tolerant
group communication system using threshold
cryptography to exchange messages. Due of
unreliability of a single entity in an electronic
environment we want to distribute the trust
model over a group of entities. We are
assuming the Byzantine fault model for the
system where no one is trusted. Our
contribution this semester is the RSA
threshold signature library, and its analysis.

1 Introduction

With the increasing dependence of the
society in the modern computing systems
availability and trustworthiness become very
important. Traditional unicast communication
models and protocols like Transmission
Control Protocol (TCP) support point-to-point
communication and were designed for
applications involving communication
between no more than two processes at a
time, usually a client and a server. However,
many modern applications for example an
online game being played by several
participants around the world, or a
multimedia conference where participants
communicate on a shared white board,
involve more than two users exchanging
information. Hence, this requires multi-point-
to—-multi-point communication.

Group communication provides this
multi-point-to—-multi-point communication by

organizing processes in groups. Groups can
be seen as dynamic sets of entities where
users can choose when they wish to join or
leave a group. Depending on how messages
are exchanged, the literature distinguishes
two different types of group communication
namely one-to-multiple communication and
multiple-to-multiple communication [1].

We started our project looking into the
Spread toolkit which provides group
communication services for wide area
networks. One important function of the
Spread is keeping a consistent view of the
system for successful group communication.
It achieves this by having the servers
exchange messages. Here an adversary can
disrupt the view by sending incorrect
messages. Therefore there is a need for
authenticated group communication in
Spread.

The servers communicate in their own
subnet by sending broadcasts. Therefore
within a subnet, servers can trust each other
since they all get the same messages.
However, such trust does not exist between
subnets and mechanisms have to be
implemented for it. One way would be to get
a signed message from each server of the
subnet from where the message is coming.
This is very expensive and therefore not
realistic. The other way would be to trust a
threshold of servers in the other subnet. To
achieve this we proposed integrating
threshold signature library into the servers.

Threshold signature schemes enable a
group of n entities share a private signature
key in such a way that, for some parameter k
(1 £ k £ n), any subset of k entities can

-1-

collectively create a valid signature on a
message, whereas any collection of k - 1 or
fewer entities cannot. To the best of our
knowledge there is no open source Threshold
Signature toolkit available. Therefore we
implemented a library for RSA Threshold
Signatures as described in Practical Threshold
signatures by Shoup [8].

This report is organized as follows-
first we describe the Threshold signatures:
the general concept, highlights of Shoup’s
implementation and related work. Then we
give a detailed description of the RSA
Threshold Crypto Library we implemented
including the API and the system
requirements. This is followed by detailed
analysis of the Threshold RSA with respect to
the traditional RSA scheme with individual
signatures. This includes both theoretical and
experimental analysis. Finally for threshold
signatures section we describe its general
advantages and disadvantages. We then
briefly explain the Spread architecture and
implementation suggestions and analysis.
That is followed by our accomplishments,
future work and conclusion.

2 Threshold Signatures

2.1 General Concept

Threshold cryptography allows a party
of say n people to share the ability of
performing a cryptographic operation (e.g.
creating a digital signature). Any t parties (t
< n) can perform this operation jointly. This t
is called the threshold. It is infeasible for any
t-1 parties (or less) to do so, even by
collusion. Also, the secret cannot be
recovered by any subset of parties.

Different methods of sharing secrets
have been studied. One of them is the
Lagrange Interpolating Polynomial Scheme
which is described as follows:

A polynomial of degree t-1 s
determined by it values at t distinct values of
its argument. In numerical analysis it is
shown that given t points (i, ky),..., (i, kit) with
different x coordinates i; ,there is a unique
polynomial of degree < t-1 passing through
them. The Lagrange polynomial is as follows:

CS 590D Final Report
Threshold Cryptography

t

h() = > K [T x-i/(isciy)

J=1
j#s

The different shares come from a
random polynomial of degree t-1:

h(x) = (ap.1x'! +...+a;x+ag) mod p

with the term ag equal to the secret key and
the rest of the coefficients being random.
Then the different shares can be calculated as

Ki = h(i) for 1 < i < w. Given these
shares the Lagrange polynomial can be
reconstructed and any t-1 shares cannot do
so [12].

2.2 Shoup’s Protocol

We implemented the Shoup’s Protocol
2 described in [8] because it is the first
practical scheme for implementing threshold
signatures. It uses the RSA signature scheme
in a very efficient manner. The scheme uses
only one level of secret sharing, to sign a
message, each server simply sends a single
response to a signature request and must do
work that is equivalent up to a constant factor
to computing a single RSA signature. No
further interaction is needed to recover from
faults.

It assumes a trusted dealer to
generate keys. This is caused by the fact that
it relies on a special property for the RSA
modulus, namely it must be the product of
two safe primes. There is recent work [11] to
implement the schema without the trusted
dealer. They showed using some non
standard assumptions that the proof of
correctness described in the paper can be
carried out without the strong primes.
Nevertheless there are other papers [14, 15]
which mention that while the requirement for
safe primes can sometimes be avoided this
typically comes at the «cost of extra
communication, computation, and or
nonstandard intractability assumptions. We
strictly implemented the protocol 2 in the
Shoup paper because it was more
computationally efficient than protocol 1 in
the same paper [8].

2.3 Related work

The Shoup’s protocol has the following
properties: Firstly it is unforgeable and robust
in the random oracle model, assuming the
RSA problem is hard. Second, signature share
generation and verification is completely non
interactive, and finally the size of an
individual signature share is bounded by a
constant times the size of the RSA modulus.

A lot of related research work has used
the Shoup protocol to make it distributed and
schemes which join techniques combining
undetachable RSA threshold signatures with it
[16]. The value of such method when applied
to the mobile agent scenario has also been
described in [17].

3 RSA Threshold Crypto Library

3.1 API of the Library
The top level main functions of the
library and their descriptions are as follows:

int TC_Combine_Sigs(TC_IND_SIG** ind_sigs,
TC_IND *key, BIGNUM *hM, TC_SIG *sig);

/*

TC_Combine_Sigs takes the individual
signatures ind_sigs from the group members
and tries to generate a valid signature on the
message hash hM. key is either the individual
key (generated by TC_get_ind or the combine
key (generated by TC_get_combine). The final
signature (if success) is returned in sig.
ind_sigs array is generated by making one or
more calls to set_tc_sig.

Return value is TC_NOERROR in case of
success, TC_ALLOC_ERROR in case allocation
of temporary BIGNUM's failed,
TC_BN_ARTH_ERROR in case these was an
error while doing arthmetic on BIGNUM's, and
TC_NOT_ENOUGH_SIGS if ind_sigs does not

contain enough (>= threshold) of verified
signatures. In all the library functions that
returns eitherTC_ALLOC_ERROR or

TC_BN_ARTH_ERROR, the error codes and
texual messages can be obtained by using
openssl > crypto > err(3)

*/
TC_DEALER* TC_generate(int bits, int 1, int
k);
/*

CS 590D Final Report
Threshold Cryptography

TC_generate sets up the threshold signature
system by generating the public keys, private
keys and the verification keys. These individual
keys could be extracted from the TC_DEALER
struct by making calls to TC_get_ind (individual
key), TC_get_combine(combine key),
TC_get_pub (public key). The hash function
used for verication can be set by
TC_Dealer_setHash (A EVP_mdS5() has is
assumed if no hash function is specified). The
public key generated will be of 2*bits bits
(typically bits=128). 1 is total number of
members and k is the threshold. The pseudo
random number generater should be seeded
using RAND_seed or RAND_add (see openssl >
crypto > rand(3) for details) before making call
to TC_generate. The TC_DEALER struct should
be freed using TC_DEALER free() to prevent
memory leaks.

Return value is TC _NOERROR in case of
success, TC_ALLOC_ERROR in case allocation
of temporary BIGNUM's failed and
TC_BN_ARTH _ERROR in case these was an
error while doing arthmetic on BIGNUM's. In all
the library functions that returns either
TC_ALLOC_ERROR or TC_BN_ARTH_ERROR,
the error codes and texual messages can be
obtained by using openssl > crypto > err(3)

*

/

int TC_Check Proof(TC_IND *tcind,BIGNUM*
hM,TC_IND_SIG* sign, int signum);

TC_Check_Proof checks the proof of
correctness sent by individual member. tcind is
either the secret individual key or the combine
key, hM is hash of the message (which was
signed), sign is the signature sent by the
member, and signum is the member's number
who generated "sign" (the same number that
was used to extract member's key from
TC_DEALER). This function is called by the
TC_Combine_Sigs internally to check all the
signatures and may not be normally used. But
in cases, when you want to detect "mallicious"
group members, you can use this function to
check their proof.

Return value is O if the proof is not valid, 1
if its wvalid, TC_ALLOC_ERROR in case
allocation of temporary BIGNUM's failed and
TC_BN_ARTH_ERROR in case these was an
error while doing arthmetic on BIGNUM's. In all
the library functions that returns either

TC_ALLOC_ERROR or TC_BN_ARTH_ERROR,
the error codes and texual messages can be
obtained by using openssl > crypto > err(3)

*/

int genIndSig(TC_IND
hM,TC_IND_SIG sign);
/*

genlndSig generates a signature and proof of
correctness on the message hash hM, using
tcind as the secret key. The output is placed in
sign. sign should already be allocated using
TC_IND_SIG_new() before passing it to
genlndSig. After its used, it can be freed by
TC_IND_SIG_free to prevent memory leaks. The
pseudo random number generater should be
seeded using RAND_seed or RAND_add (see
openssl > crypto > rand(3) for details) before
making call to this function.

*tcind, BIGNUM

Return value is TC _NOERROR in case of
success, TC_ALLOC_ERROR in case allocation
of temporary BIGNUM's failed and
TC_BN_ARTH_ERROR in case these was an
error while doing arthmetic on BIGNUM's.

*/

int TC_verify(BIGNUM *hM, TC_SIG sig,
TC_PK *tcpk);

/*

TC_verify verifies the signature sig (generated
using TC_Combine_Sigs) on the message hM
using the public key tcpk.

Return value is O if the signature is not valid, 1
if its wvalid, TC_ALLOC_ERROR in case
allocation of temporary BIGNUM's failed and
TC_BN_ARTH_ERROR in case these was an
error while doing arthmetic on BIGNUM's.

*/

The helper functions are described below:
/* Helper functions on structs defined. */

TC_DEALER *TC_DEALER_new(void);
/* Allocates and returns a new TC_DEALER
struct. Returns NULL on error */

void TC_DEALER _free(TC_DEALER *tc);
/* Frees the TC_DEALER struct generated by
TC_DEALER_new or TC_generate */

CS 590D Final Report
Threshold Cryptography

void TC_DEALER print(TC_DEALER *tc);
/* Prints TC_DEALER struct */

int TC Dealer_setHash (TC_DEALER
*tcd,unsigned short hashpointer);

/* Changes the default hash function
(EVP_md5()) used for verification by tcd */

TC_IND *TC_get_ind(int index,TC_DEALER
*tcd);

/* Extracts the index member's private key
from tcd. Should be freed using TC_IND_free to
prevent memory leak */

TC_PK *TC_get_pub (TC_DEALER *tcd);

/* Extracts the public key from tcd. Should be
freed using TC_PK_free to prevent memory
leaks */

TC_IND *TC_get_combine(TC_DEALER *tcd);
/* Extracts the combine key from tcd. This
key is similar the ind key except that it doesn't
have the secret share and hence can only be
used for combining and not signing the
individual messages. Should be freed using
TC_IND_free to prevent memory leaks

*/

void TC_PK free(TC_PK *tcpk);
/* Frees memory used by tcpk */

void TC_IND_free(TC_IND *tcind);
/* Frees tcind. tcind can be a secret/private
key or a combine key */

TC_IND_SIG *TC_IND_SIG_new();
/* Allocates and returns a new TC_IND_SIG
struct. Should be freed using TC_IND_SIG_free

*/

void TC_PK Print(TC_PK *pk);
/* Prints pk */

void TC_IND_Print(TC_IND *ind);
/* Prints ind */

void TC_IND_SIG_Print(TC_IND_SIG *sig);
/* Prints sig */

TC_IND_SIG **TC_SIG_Array_new(int 1);

/* Returns a new array of size 1(=total number
of members), which is to be used as target of
one or more set TC_sig calls to set the
individual signatures, and finally it is passed to

TC_Combine to combine all the individual
signatures

*/

void set_TC_SIG(int index, TC_IND_SIG*
si,TC_IND_SIG** sigs);

/* Adds the individual signature si to index
slot of sigs. Index should be number of member
whose signature is si. sigs should be allocated
using TC_SIG_Array_new before making this
call. After sigs is used in TC_Combine, it
should be freed using TC_SIG_ARRAY_free to
prevent memory leaks

*/

void TC_IND_SIG_free(TC_IND_SIG *a);
/* Frees TC_IND_SIG a */

void TC_SIG_Array_free(TC_IND_SIG **a,int
1);

/* Frees TC_IND_SIG **a. 1 is total number of
members */

Finally the Marshal and Demarshal functions
to convert the TC's structs into stream of
bytes and convert the streams of bytes back
into the structs. This is useful if you want to
transfer the structs from one
machine/process to other. The stream of
bytes produces is independent of the platform
(big endian, small endian) and thus can be
used to transfer these structures across
platforms. All structs returned by demarshal
should be freed by corresponding calls to
free().

// Marshal, Demarshal fucntions */

int TC_PK size(TC_PK *a);

/* Returns size of byte stream produced by
marshaling a */
int TC_PK_marshal(TC_PK *a, unsigned char
*buf);

/* marshals a and stores it in buf. buf should
be atleast TC_PK_size(a) long.
Returns TC_PK_size(a) in case of success, -1 on
error

*/

TC PK *TC_PK demarshal(unsigned char
*buf);

/* Demarshals buf and allocates and returns
back a TC_PK structure.

CS 590D Final Report
Threshold Cryptography

Returns the struct in case of success, NULL on
error (e.g. cannot parse buf, cannot allocate
TC_PK).

*/

int TC_IND_size(TC_IND *a);
/* Returns size of byte stream produced by
marshaling a */

int TC_IND marshal(TC_IND *a, unsigned
char *buf);

/* marshals a and stores it in buf. buf should
be atleast TC_IND_size(a) long.
Returns TC_IND_size(a) in case of success, -1
on error

*/

TC_IND *TC_IND_demarshal(unsigned char
*buf);

/* Demarshals buf and allocates and returns
back a TC_IND structure.
Returns the struct in case of success, NULL on
error (e.g. cannot parse buf, cannot allocate
TC_IND).

*/

int TC_IND_SIG_size(TC_IND_SIG *a);
/* Returns size of byte stream produced by
marshaling a */

int TC_IND_SIG_marshal(TC_IND_SIG *a,
unsigned char *buf);

/* marshals a and stores it in buf. buf should
be atleast TC_IND_SIG_size(a) long.
Returns TC_IND_SIG_size(a) in case of success,
-1 on error

*/

TC_IND_SIG
*TC_IND_SIG_demarshal(unsigned char *buf);
/* Demarshals buf and allocates and returns
back a TC_IND_SIG structure.
Returns the struct in case of success, NULL on
error (e.g. cannot parse buf, cannot allocate
TC_IND_SIG).
*/

int TC_SIG_size(TC_SIG a);
/* Returns size of byte stream produced by
marshaling a */

int TC_SIG_marshal(TC_SIG a, unsigned char
*buf);

/* marshals a and stores it in buf. buf should
be atleast TC_SIG_size(a) long.

Returns TC_SIG_size(a) in case of success, -1
on error

*/
TC_SIG TC_SIG_demarshal(unsigned char
*buf);

/* Demarshals buf and allocates and returns
back a TC_SIG structure.

Returns the struct in case of success, NULL on
error (e.g. cannot parse buf, cannot allocate
TC_SIG).

*/

3.2 System Requirements

The library has been made as generic as
possible although the OpenSSL Crypto library
is needed to be installed in the machine.

4 Analysis

4.1 Theoretical Analysis of Threshold
RSA signature compared to single RSA
signatures

The asymptotic analysis is given in the
table below where k is the threshold. We refer
to our implementation of the RSA Threshold
Signatures as TC-RSA and the traditional RSA
implemented in the OpenSSL Crypto library
as RSA.

TC-RSA RSA
Size of 0(1) O(k)
Signature
Generate 0O(k) 0O(k)
Individual
Signature
Merging 0O(k) N/A
Signatures
Signature 0(1) O(k)
Verification

The size of the signature in TC-RSA is
simply O(1) because all the partial signatures
are combined to one as compared to
traditional RSA where all the k signatures are
required. Then to generate individual
signatures the time is bounded by the
threshold of signatures. The same bound
holds true for combining of the TC-RSA
signature. There is no combining of
signatures in the single RSA schema. Finally
in the verification since there is only one TC-
RSA signature, O(1) time is required whereas
the RSA would need verification of all k

CS 590D Final Report
Threshold Cryptography

signatures. Note that in RSA all the different
public keys have to be matched with the
signer whereas in TC-RSA there is only one
public key for the group of signers.

4.2 Experimental Analysis of Threshold
RSA signature compared to single RSA
signatures

We compared our Threshold Signature
library with the OpenSSL RSA signatures. The
total number of members participating (n)
was taken as 100 and the threshold (k) was
67. Since we are considering the Byzantine
fault model we do need 2/3™’s of the group to
be honest.

The time was measured in micro-
seconds using gettimeofday() library call
before and after the different functions. The
machine used was a Dell Workstation with P4
1.8 GHz processor, 256 MB of RAM and Linux
0S. The four functions calculated were 1)
Dealer 2) Individual signature generator 3)
Combiner and 4) Verifier. They are described
as follows:

Dealer Analysis
4.00E+07-
(]
[&]
?
S 2.00E+07{"
S
=
0.00E+00-
Dealer
ETC-RSA 1.14E+07
(1024)
B RSA (1024) 3.48E+07
Figure 1

The dealer in RSA has to create 100 public,
private key pairs and does considerably more work
than the TC-RSA which creates 100 shares of the

secret and one public key.

Signer
1.50E+06-
(7]
9 1.00E+06-
[7]
o
£ 5.00E+05"
0.00E+00- -
Sign
OTC-RSA 1.39E+06
(1024)
HERSA (1024) 5.49E+05
Figure 2

The signing in the TC-RSA takes more
time because of the need of the proof of
correctness (‘z' , ‘¢’) as described in the
Shoup’s paper [8].

Combiner
6.00E+06-
8 4.00E+06¢"
S
g 2.00E+064"
0.00E+00- s
Combine
O TC-RSA 4.46E+06
(1024)
H RSA (1024) 0
Figure 3

There is no combining of the individual
RSA signatures and the 67 (threshold)
signatures take 4.46 seconds to combine. 67
is relatively large number as compared to the
thresholds we will have for the Spread toolkit.

CS 590D Final Report
Threshold Cryptography

Verifier
2.00E+04-
§ 1.50E+04-
S 1.00E+04-
]
€ 5.00E+03-
0.00E+00-
Verify
OTC-RSA 1.98E+02
(1024)
H RSA (1024) 1.52E+04
Figure 4

The verification holds one of the most
important advantages of using the TC-RSA as
compared to traditional individual signatures.
As we would expect the RSA takes time in the
order of approximately 70 times of the time
taken for the one TC-RSA signature.

4.3 Setup cost analysis

Typical RSA requires PKI and the
verification of n signatures would require the
person verifying to know n public keys where
as in TC-RSA one needs to know only one
public key, hence the setup cost is minimal.

4.4 Dealer Risk Analysis

In the case of TC-RSA only one dealer
needs to be compromised as compared to
RSA where k out of n dealers needs to be
compromised to generate k invalid sets of
secret keys resulting in invalid signatures.
Here the RSA seems to be more secure.

4.5 Hop by hop Combining vs. Single
Combiner

We think that the TC-RSA protocol can
be modified in a way such that the combining
is done hop by hop. In TC-RSA a malicious
combiner cannot remove a particular
signature from the combined set of
signatures. It can still remove the entire
signature. In traditional RSA and adversary
can remove any particular signature since
they are just appended with each other and
can be distinguished.

4.6 Threat Analysis of TC-RSA compared
to RSA

TC-RSA requires 2 secure hash
functions whereas RSA requires one.
Individual signature phase and verifier threats
are the same.

5 Advantages of Threshold Signatures

RSA Threshold signature has several
advantages. It is secure and robust in the
random oracle model assuming the RSA
problem is hard. The signature share
generation and verification are completely
non- interactive. Also the size of an individual
signature share is bounded by constant times
the size of the RSA modulus.

It is easy to change the secret shares
without changing the secret itself i.e. by
having a new polynomial with the same free
term. It allows for and hierarchical scheme in
which the number of pieces needed to
determine secret depends on their
importance. The combiner can verify the
individual signatures before combing the
whole message. The combiner of the
signature cannot determine which of the k
shareholders created the signature. The
combiner does not recover the secret key and
thus cannot forge the group signature. By
choosing different k and n it provides tradeoff
between security and reliability.

6 Disadvantages of Threshold
Signatures

One disadvantage of threshold
signatures include is the necessity of the
dealer, an entity who computes the shares
and distributes them, is trusted. We also need
an entity that combines all the pieces in order
to recover the key and both can be central
points of trust and failure.

7 Spread
7.1 Introduction

Spread is a toolkit that provides a high
performance messaging service that is
resilient to faults across external or internal
networks. Spread functions as a unified
message bus for distributed applications, and
provides highly tuned application-level
multicast and group communication support.
Spread services range from reliable message
passing to fully ordered messages with

CS 590D Final Report
Threshold Cryptography

delivery guarantees, even in case of computer
failures and network partitions. [1]

7.2 Spread Architecture

Spread Daemon

Application
M Session € 2. ShLib
Application
\ SP-Lib
Yyvy \
‘ Membership kt()‘ Transport ‘

Application

| Routing E;" Network ‘

E Sp-Lib

‘ Datalink(UDP/IP with {Uni,Broad,Mult}cast) T

Figure 5 Spread Architecture

Spread architecture, as shown in
Figure 5, integrates two low-level protocols:
one for local LANs called Ring, and one for
WANSs connecting them, called Hop. Based on
this architecture, Spread decouples the
dissemination and local reliability mechanisms
from global ordering and stability protocols.
This allows many optimizations useful for
WAN settings.

Spread is a very flexible group
communication service suitable for LANs as
well as for WANSs. It provides priority channels
to the application and open-group semantics
where a sender does not have to be a
member of the group in order to multicast to
it. Spread, written in ANSI C, is available for
all common platforms and different client APIs
(C, C++, Java) are supported. Another
advantage of Spread is that these APIs are
very simple and their use is independent from
the configuration. Thus, the same application
can be used in LANs as well as in WANs. The
performance of Spread depends on the
configuration of the system [1].

7.3 Implementation suggestion of TC-
RSA in Spread

In previous work [13] distinction was
made among two basic approaches to
integrate security services into client-server
group communication systems. The layered

architecture which places security services in
a client library layered atop the GCS client
library and the integrated architecture which
has the security services at the servers. We
planned to implement the Threshold
Signature toolkit in the latter architecture.
Understanding and implementing the
threshold signature toolkit is a part of the
future work for this project.

7.4 Analysis

For the setup of the Spread servers
the configuration file should contain all the
potential servers. The dealer phase should be
completed before setting up the configure
files for the servers. The secret key,
verification keys for its own subnet and the
public keys for the other subnets should be
set in this file. The dealer could be any secure
machine dedicated for this purpose.

In the case of network partition when
each partition has at least the threshold
number of servers then there is no problem.
Both these partitions continue to work similar
to normal Spread as they both can generate
valid group signature on their messages. If
any partition has less than the threshold
servers then the partition can not produce a
valid signature. In this case, it cannot
communicate with rest of Spread servers and
will be cut off from it until it can communicate
with at least threshold of its members.

The key distribution scheme described
above suggests static keys with fixed
threshold. For security reasons, it would be
sometimes desirable to refresh the secret
keys of a group. While this is possible, it
introduces need of a trusted party (dealer) to
refresh the keys. Thus, we discourage key
refresh and any change in the value of the
threshold because any group of malicious
servers can claim a network partition and
establish a new threshold. The key refresh is
possible only if we keep the dealer alive
continuously. This would be more vulnerable
because it has a single point of failure and
introduce many complexities because of the
security problems.

8 Accomplishments

During the first few weeks of our
project we did extensive research and
understood the current state of work in group

CS 590D Final Report
Threshold Cryptography

communication protocols and threshold
cryptography. Then we studied Spread
architecture and the interaction between its
modules. We spent majority of our time
implementing and testing the RSA Threshold
Signature library successfully. Although the
protocol was described in the Shoup paper[8]
we had to understand and solve several
intricate details including the detailed
mathematical functions and then its
implementation using the OpenSSL crypto
library. We also did its threat and complexity
analysis which will be wuseful for those
implementing our library.

9 Future Work

Our threshold signature library can be
now integrated in the spread communication
system followed by its testing and
performance analysis.

10 Conclusion

Although the motivation to implement
the RSA threshold signature library was
motivated by its wuse in implementing
authenticated group communication in the
Spread toolkit, we believe that this library can
be used in a very generic fashion. We have it
open source and have tested it thoroughly
and has no known bugs. Its analysis with
single RSA also gives the tradeoffs of using
such a scheme instead of traditional individual
RSA sighatures.

11 References

[1] Secure Group Communication Systems
Master’'s Thesis of Science by Gernot
Schmélzer (March 2003)

www.iaik.tu-

graz.ac.at/teaching/11 diplomarbeiten/
archive/Schmoelzer.pdf

[2]Admission Control Admission Control in
Peer Groups in Peer Groups
http://sconce.ics.uci.edu/docs/gac seminar.p
df

[3] D.Dolev. The Byzantine Generals Strike
Again

[4] L. Lamport, R. Shostak, and M. Pease.
The Byzantine generals problem. ACM
Transactions on Programming Languages and
Systems, 4(3):382-401, July 1982.

[5] M.Castro, B.Liskov.
Fault Tolerance

Practical Byzantine

[6] S.Mishra, N.P.Subraveti,
S.Tanaraksiritavorn. Issues in Building
Intrusion Tolerant Group Membership

Protocols, Shivakant Mishra

[7] Group Communication Specifications: A
Comprehensive Study by Gregory V.
Chockler, Idit Keidar and Roman Vitenberg
http://www.ee.technion.ac.il/people/idish/ftp/
gcs-survey.pdf
http://www.ee.technion.ac.il/people/idish/ftp/
GroupCommunication.pdf

[8] Practical
Shoup
http://shoup.net/papers/thsig.pdf

Threshold Signatures, Victor

[9] Spread Toolkit Documentation
http://www.spread.org/docs/docspread.html

[10] OpenSSL
http://www.openssl.org/

Project

[11] Practical Threshold RSA Signatures
Without a Trusted Dealer, by Ivan B.
Damgard and Maciej Koprowsk

www.brics.dk/RS/00/30/BRICS-RS-00-30.pdf

10

CS 590D Final Report
Threshold Cryptography

[12] Cryptanalysis of Number Theoretic

Ciphers by Samuel S. Wagstaff

[13] Scaling Secure Group Communication
Systems: Beyond Peer-to-Peer.Yair Amir,
Cristina Nita-Rotaru,Jonathan Stanton, Gene
Tsudik

http://www.cnds.jhu.edu/pub/papers/discex3

scalable.pdf

[14] E_cient Computation Modulo a Shared
Secret with Application to the Generation of
Shared Safe-Prime Products by Algesheimer
et. al. (2002)
http://www.zurich.ibm.com/security/publicati
ons/2002/alcash02.pdf

[15]

Fully Distributed Threshold RSA
Standard Assumptions by Fouque, Stern
http://citeseer.ist.psu.edu/556204.html

under

[16]Undetachable Hreshold Signatures by
Chris et. al.
http://citeseer.ist.psu.edu/539180.html

[17] On the value of threshold signatures
Niklas Borselius et. al.
http://citeseer.ist.psu.edu/532301.html

